STEM by ART: Teaching Science, Technology, Engineering, Math by ART

# Programming Arduino with Scratch (S4A)

#### Fotios Gioulekas, Panagiotis Katsaros



School of Informatics Aristotle University of Thessaloniki Greece



http://stem.lupacovka.cz

# Computer programming & computer program



- Computer programming:
  - act of writing computer programs to solve a problem
- Computer program
  - structured collection of a sequence of instructions written using a Computer Programming Language to tell the computer to do a specific task

Robotic arm playing chess



#### Calorie Calculator



https://www.calculator.net/calorie-calculator.html

Image taken from:

https://www.flickr.com/photos/steve\_hoge/5143590110/



- A microcontroller is a computer system on a single chip that does a job (MCU, μC)
  - control electronic equipment
  - exists in electrical device, cars, washing machines, microwave ovens, telephones
  - includes central processing unit (CPU), memory (a small amount of RAM, program memory, or both), and programmable input/output peripherals, which are used to interact with various units







http://d1gsvnjtkwr6dd.cloudfront.net/large/IC-ATMEGA168A-PU\_LRG.jpg http://i.stack.imgur.com/whWVa.jpg



#### **Arduino**

- Arduino is an <u>open-source electronics prototyping platform</u> that contains both hardware and software founded by Massimo Banzi and David Cuartielles in 2005
- open-source: Original design files are freely distributes enabling people to study them, make changes and share those changes with others
- Electronics: Science sector dealing with the study of flow and control of electrons (electricity) and the study of their behavior and effects in devices using such electrons
- Prototyping: An original model, form or an instance that serves as a basis for other things
- Platform: A combination of a hardware system with software environment that can be programmed and execute other software





One of the many flavors of Arduino platforms

- It is able to read inputs (e.g. light on a sensor, a finger on a button, or a Twitter message) and turn it into an output (e.g. activating a motor, turning on LEDs, publishing something online)
- It can sense and react with the environment
- The µC on the Arduino board is programmed using the Arduino programming language (Wiring Language which is based on C++) and the Arduino Integrated Development Environment (IDE)
- The software consists of a standard programming language compiler and a boot loader that executes on the microcontroller









#### **Arduino Uno Kit**











- How can I connect various sensors to Arduino?
- How can I connect actuators to Arduino?
- How can I tell or program an Arduino to do a job?







- It is an computer software framework that includes:
  - A text editor to create computer programs
  - A compiler to compile the created programs using the text editor into binary format or
  - An interpreter to execute the programs created directly





# STMBYART

#### Scratch

- Scratch is an open source visual programming language for teaching programming to children
- One can create interactive stories, games, and animations – and share the creations with others on the we
- Developed by the Lifelong Kindergarten group at the MIT Media Lab, USA
- Programming resembles to putting parts together assembling a puzzle



Source: <a href="https://scratch.mit.edu/">https://scratch.mit.edu/</a>



#### Scratch for Arduino S4A - I

- S4A, developed in 2010 by the Citilab Smalltalk Team, is a Scratch modification that allows for simple programming of the Arduino open source hardware platform
- It provides a high level interface to Arduino programmers so as to manage sensors and actuators
- An Arduino sketch (S4AFirmware16.ino) has to be loaded to the board to communicate with S4A through USB



Source: http://s4a.cat/

#### Scratch for Arduino S4A - II

Comparison of a simple program that blinks a LED connected to LED BUILTIN PIN #
 13 on Arduino and in S4A

#### **Arduino Code**



#### **S4A Program**







#### **Breadboards**

- A breadboard is used to create circuits and connect different sensors and actuators to the
   Arduino board through jumper wires, and electronic components
- Horizontal hole groups are linked power and ground columns are connected vertically





- A physics law which states that current passing through a conductor is proportional to the input voltage
- Voltage (V): is the measure of electrical potential
  - unit of measurement = Volts (V)
- Current (I): is the amount of flow through a conductive material
  - unit of measurement = Amperes or Amps (A)
- Resistance (R): is the material's opposition to the flow of electric current
  - unit of measurement = Ohms  $(\Omega)$







```
V = IR ... To find voltage
I = V/R ... To find current
R = V/I ... To find resistance
```

#### **How a LED works**

It is a light-emitting diode that emits light when activated based on the Electroluminescence (EL)

 An optical phenomenon and electrical phenomenon in which a material emits light in response to the passage of an electric current

Electricity flows from a higher voltage to a lower voltage





# STARTA

#### **S4A** installation

- Install S4A into your PC
  - Download the program from <a href="http://vps34736.ovh.net/S4A/S4A16.zip">http://vps34736.ovh.net/S4A/S4A16.zip</a>
  - Unzip it to a folder named S4A
- Installing the Firmware into your Arduino
  - Download Arduino IDE from <a href="https://www.arduino.cc/download\_handler.php">https://www.arduino.cc/download\_handler.php</a> and run the file arduino-1.8.5-windows.exe to setup it
  - Download S4A firmware from <a href="http://vps34736.ovh.net/S4A/S4AFirmware16.ino">http://vps34736.ovh.net/S4A/S4AFirmware16.ino</a>
  - Connect your Arduino board to a USB port in your computer
  - Open the firmware file (S4AFirmware16.ino) from the Arduino environment
  - In the Tools menu, select the board version and the serial port where the board is connected
  - Load the firmware into your board through File > Upload





# **Physical computing**

- Design interactive physical systems by the use of software and hardware that can sense and respond to the real world
  - smart automotive
  - traffic control systems
  - factory automation processes
  - Smart buildings
  - Robots





# Lab 1 – Control a LED from S4A (I)

 Connect a LED and a 220Ω Resistor on the breadboard and with Arduino according to the schematic below





# Lab 1 – Control a LED from S4A (II)

- In S4A select
- Digital off and on I/O
- Drag and drop them to scripts area
- Change them to #10





### Lab 1 – Control a LED from S4A (III)

- From control place wait 1 sec block in between the on of motion blocks
- LED switches on and off every 1 sec if you click on the block of commands





### Lab 1 – Control a LED from S4A (IV)

How to make Loops in the program?



# Lab 1 – Control a LED from S4A (V)

- START
- When button is pushed, turn ON the LED for 10 seconds and then switch it OFF
- 10KΩ pull down resistor is required to avoid inducing a dead short circuit when the button is













# Lab 1 – Control a LED from S4A (VI)

 Connect a LED and a 220Ω Resistor on the breadboard and with Arduino according to the schematic below





# Lab 1 – Control a LED from S4A (VI)

S4A program

```
when 🦱 clicked
forever
       sensor Digital2▼ pressed?
   digital 10▼ on
   wait 10 secs
   digital 10 v off
```

# Lab 2 – Turn on a LED when LDR sensor is covered Automatic Night Light (I)



CdS - LDR (Cadmium Sulfide - Light Dependent Resistor) or photocell sensor

Its resistance is inversely dependent on the amount of light falling on it





# Lab 2 – Turn on a LED when LDR sensor is covered Automatic Night Light (II)



Write down the Voltage values at Analog pin A0

| CONDITION                                      | A0 VOLTAGE (mV) |
|------------------------------------------------|-----------------|
| Lab's light are switched ON                    |                 |
| Lab's light are switched ON & Hand on the LDR  |                 |
| Lab's light are switched OFF                   |                 |
| Lab's light are switched OFF & Hand on the LDR |                 |



What is the threshold value that differentiates darkness from lightness?

# Lab 2 – Turn on a LED when LDR sensor is covered Automatic Night Light (II)



- Program S4A
- Sense the threshold voltage value of the sensor in an if loop
- Depending on the value of the sensor
  - Switch on and off the LED







 Program Arduino to buzz when temperature goes higher than a value









# Lab 3 - Temperature Alarm – (II)

Schematic Topology





#### Lab 3 - Temperature Alarm – (III)

- Read the voltage value in pin A1
- Does it correspond to real room temperature?
- How to calculate the temperature value in °C since voltage values are read in A1 from the LM35 sensor?
  - Formula according to LM35 datasheet
  - Find what percentage of the range (1024 = 10bits representation of ADC) value in A1 is, multiplying that by the range itself (5000 mV), and divide it by 10 mV per °C
    - Temperature in °C = (A1 value \* 500)/1023

# Lab 3 - Temperature Alarm – (IV)

STABYAR

- S4A program
  - Loop forever
  - Enter the formula in S4A
  - If temperature is above 25°C
    - Buzzer is activated
  - Else
    - Buzzer is deactivated

- ■Make 1 variable
  - temperature





# Lab 3 - Temperature Alarm – (I)

#### ■Final S4A program

```
when 🧢 clicked
forever
 set temperature ▼ to  value of sensor Analog3 ▼ *
                                                   500
 say temperature
        temperature > 25
   digital 11 v on
   digital 11▼ off
```



# Thank you



